当前位置:首页 > 专题范文 > 公文范文 >

数学题技巧17篇(2023年)

时间:2023-09-11 18:06:02 来源:网友投稿

数学题的技巧第1篇数形结合法“数”就是数和式子,“形”就是图形和图像,所谓的数形结合就是找出数与图之间的对应关系,将“数”与“行”相互转化,图形的表现形式更加直观和清楚,更能找到解答问题的突破口,观察下面是小编为大家整理的数学题技巧17篇,供大家参考。

数学题技巧17篇

数学题的技巧 第1篇

数形结合法

“数”就是数和式子,“形”就是图形和图像,所谓的数形结合就是找出数与图之间的对应关系,将“数”与“行”相互转化,图形的表现形式更加直观和清楚,更能找到解答问题的突破口,观察图形的特点与数与式的结构分析,引起联想,化抽象为直白将数学式中隐含的数量关系用图形表现出来。

在解题的时候一般是建立坐标系,将数量化静为动进行求解。或者是分析数和式的结构特点,将问题转化到另一个角度进行思考,在对问题构建出一个函数图像、一个图表或者是一个几何图形等进行题目的分析和求解。

精心归类、不断创新

数学课堂学到的知识点多,比较繁杂。学生只有通过精心归类,才能准确掌握数学学到的知识点并很好地进行利用,这就要求在授课过程中指导学生对实际问题进行归类整理,并提供一般的建模思路,准确地对实际问题进行数学建模。例:实际问题是属于哪一类的问题,应该用哪一种方程(一元一次方程、二元一次方程组、一元二次方程等)求解。

在教学中大胆鼓励学生对例题、习题进行改编。让学生勇于创新,通过改变求解结果、改变数量关系等。对所学知识点纵横审视、反复琢磨,从而体会出题者的意图,提高解题的速度。同时让学生自己能够根据现代化拭技术搜集材料,大胆改编改造新题,进行建模多种解法的练习。充分调动学生学习实际问题的积极性,使学生能够独立完成数学建模。


数学题的技巧 第2篇

第一,应十分熟悉习题中所涉及的内容,做到概念清晰,对定义、公式、定理和规则非常熟悉,你应该知道,解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题,解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题,解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快,因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其含义的本质,接着马上就做后面所配的练习,一刻也不要停留,我指导学生按此方法学习,几乎所有的学生都大大提高了解题的速度,其效果非常好。

第二,还要熟悉习题中所涉及的以前学过的知识和与其他学科相关的知识,例如,有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是数学题中要用到的一个物理概念,而我们对此已不是十分清晰了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低,这时我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

第三,对基本的解题步骤和解题方法也要熟悉,解题的过程,是一个思维的过程,对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案,否则,走了弯路就多花了时间。

数学题的技巧 第3篇

要学会归纳总结。

在解出一道习题之后,对所涉及到的知识、解题方法进行归纳总结,以便使解题思路更为清晰,就能达到举一反三的效果,对于类似的习题一目了然,可以节约大量的解题时间。

应先易后难,逐步增加习题的难度。人们认识事物的过程都是从简单到复杂,一步一步由表及里地深入下去。一个人的能力也是通过锻炼逐步增长起来的。

若简单的问题解多了,从而使概念清晰了,对公式、定理以及解题步骤熟悉了,解题时就会形成跳跃性思维,解题的速度就会大大提高。养成了习惯,遇到一般的难题,同样可以保持较高的解题速度。而我们有些学生不太重视这些基本的、简单的习题,认为没有必要花费时间去解这些简单的习题,结果是概念不清,公式、定理及解题步骤不熟,遇到稍难一些的题,就束手无策,解题速度就更不用说了。

认真、仔细地审题。

对于一道具体的习题,解题时最重要的环节是审题。审题的第一步是读题,这是获取信息量和思考的过程。读题要慢,一边读,一边想,应特别注意每一句话的内在涵义,并从中找出隐含条件。读题一旦结束,哪些是已知条件?求解的结论是什么?还缺少哪些条件,可否从已知条件中推出?

在你的脑海里,这些信息就应该已经结成了一张网,并有了初步的思路和解题方案,然后就是根据自己的思路,演算一遍,加以验证。有些学生没有养成读题、思考的习惯,心里着急,匆匆一看,就开始解题,结果常常是漏掉了一些信息,花了很长时间解不出来,还找不到原因,想快却慢了。很多时候学生来问问题,我和他一起读题,读到一半时,他说:“老师,我会了。”所以,在实际解题时,应特别注意,审题要认真、仔细。

数学题的技巧 第4篇

选择题

选择题是数学考试中常见的题型,我们想要提高选择题的正确率,就要求我们在平时练习的时候要注意归纳题干中的信息,排除干扰选项,找到正确的答案。

填空题

一般高考数学的填空题都在选择题之后,难度相比其他题型来说也会低不少,而且分值也不是非常高。数学考试的填空题主要考察我们最基础的能力。一般填空题的运算量都不算很大,只要我们熟练掌握各个知识点,都可以顺利的解答。

身体技巧

正确的审题是解答问题的关键,审题的过程包括明确条件,分析条件,确定解题思路。分析条件是指我们在数学考试的时候要找出题目中已知的条件。分析条件就是根据已知条件来找出隐含的条件,从掌握的信息来进行推导,以达到解题的目的。确定思路就是分析已知条件和最终解答之间的联系,需要用到哪些定理,运用哪些步骤,最后完成解答。

数学题的技巧 第5篇

圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。

选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!

三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!

空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!

立体几何中第二问叫你求余弦值啥的一般都用坐标法!如果求角度则常规法简单!

选择题中考线面关系的可以先从D项看起,前面都是来浪费你时间的。

选择题中求取值范围的直接观察答案从每个选项中取与其他选项不同的特殊点带入能成立的就是答案。

线性规划题目直接求交点带入比较大小即可。

遇到这样的选项 这样的话答案一般是D因为B可以看作是2/2 前面三个都是出题者凑出来的,如果答案在前面3个的话,D应该是2(4/2)。

怎么样?看完上边几个技巧,是不是觉得自己的数学拿分能力“突突”猛增?

不过,想在不会的情况下再多拿一些分,还需要在大题上多懂得技巧、多多拿分。

大题文科第一题一般是三角函数题。

第一步一般都是需要将三角函数化简成标准形式Asin(ωx+φ)+c

接下来按题做就行了,注意二倍角的降幂作用以及辅助角(合一)公式,周期公式,对称轴、对称中心、单调区间、最大值、最小值都是用整体法求解。求最值时通过自变量的范围推到里面整体u=ωx+φ 的范围,然后可以直接画sinu的图像,避免画平移的图像。

这部分题还有一种就是解三角形的问题。运用正弦定理、余弦定理、面积公式,通常有两个方向,即角化成边和边化成角,得根据具体问题具体分析哪个方便一些,遇到复杂的题就把未知量列成未知数,根据定理列方程组,然后解方程组即可。

理科如果考数列题的话,注意等差、等比数列通项公式、前n项和公式;

证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可,其它的一般注意类型采用不同的方法(已知Sn求an、已知Sn与an关系求an(前两种都是利用an=Sn-Sn-1,注意讨论n=1、n>1),

累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项);

数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。如有其它问题,注意放缩法证明,还有就是数列可以看成一个以n为自变量的函数。

第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。计算题主要是体积,注意将字母换位(等体积法);

线面距离用等体积法。理科还有求二面角、线面角等,用建立空间坐标系的方法(向量法)比较简单,注意各个点的坐标的计算,不要算错。

第三题是概率与统计题,主要有频率分布直方图,注意纵坐标(频率/组距)。求概率的问题,文科列举,然后数数,别数错、数少了啊,概率=满足条件的个数/所有可能的个数;

理科用排列组合算数。独立性检验根据公式算K方值,别算错数了,会查表,用1减查完的概率。回归分析,根据数据代入公式(公式中各项的意义)即可求出直线方程,注意(x平均,y平均)点满足直线方程。理科还有随机变量分布列问题,注意列表时把可能取到的所有值都列出,别少了,然后分别算概率,最后检查所有概率和是否是1,不是1说明要不你概率算错了,要不随机变量数少了。

第四题是函数题,第一步别忘了先看下定义域,一般都得求导,求单调区间时注意与定义域取交。看看题型,将题型转化一下,转化到你学过的内容(利用导数判断单调性(含参数时要利用分类讨论思想,一般求导完通分完分子是二次函数的比较多,讨论开口a=0、a<;0、a>;0和后两种情况下δ<;=0、δ>;0)

求极值(根据单调区间列表或画图像简图)、求最值(所有的极值点与两端点值比较)等),典型的有恒成立问题、存在问题(注意与恒成立问题的区别),不管是什么都要求函数的最大值或最小值,注意方法以及比较定义域端点值,注意函数图象(数形结合思想:求方程的根或解、曲线的交点个数)的运用。

证明有关的问题可以利用证明的各种方法(综合法、分析法、反证法、理科的数学归纳法)。多问的时候注意后面的问题一般需要用到前面小问的结论。抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

第五题是圆锥曲线题,第一问求曲线方程,注意方法(定义法、待定系数法、直接求轨迹法、反求法、参数方程法等等)。一定检查下第一问算的数对不,要不如果算错了第二问做出来了也白算了。

第二问有直线与圆锥曲线相交时,记住“联立完事用联立”,第一步联立,根据韦达定理得出两根之和、两根之差、因一般都是交于两点,注意验证判别式>;0,设直线时注意讨论斜率是否存在。

第二步也是最关键的就是用联立,关键是怎么用联立,即如何将题里的条件转化成你刚才联立完的x1+x2和x1x2,然后将结果代入即可,通常涉及的题型有

弦长问题(代入弦长公式)、

定比分点问题(根据比例关系建立三点坐标之间的一个关系式(横坐标或纵坐标),再根据根与系数的关系建立圆锥曲线上的两点坐标的两个关系式,从这三个关系式入手解决)、

点对称问题(利用两点关于直线对称的两个条件,即这两点的连线与对称轴垂直和这两点的中点在对称轴上)、

定点问题(直线y=kx+b过定点即找出k与b的关系,如b=5k+7,然后将b代入到直线方程y=kx+5k+7=k(x+5)+7即可找出定点(-5,7))、

定值问题(基本思想是函数思想,将要证明或要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,通过适当化简,消去变量即得定值。)、

最值或范围问题(基本思想还是函数思想,将要求解的量表示为某个合适变量(斜率、截距或坐标)的函数,利用函数求值域的方法(首先要求变量的范围即定义域—别忘了delt>;0,然后运用求值域的各种方法—直接法、换元法、图像法、导数法、均值不等式法(注意验证“=”)等)求出最值(最大、最小),即范围也求出来了)。

抽象的证明问题别光用眼睛在那看,得设出里面的未知量,通过设而不求思想证明问题。

数学题的技巧 第6篇

培养初中生的运算能力

确定了应用题的类型,读懂了题意,找到了解答方法,之后就要进行解题了,可是这个时候也是学生容易出错的时候. 由于自身运算能力的差距,使得很多学生读懂了题意后,也同样得不到分. 这就要求学生要善于培养数学的运算能力,正确的理解并掌握数学运算法则和公式,这也是数学运算的基础所在.

然而,在大部分的初中生中对于数学运算的法则和公式掌握情况都不过关,存在记不准、混淆法则和公式、对运算公式的变形没有掌握等等情况,这都影响了学生数学运算能力的形成,进而阻碍了学生作答应用题的速度和能力的形成. 所以,要想准确的完成应用题的解答,就必须注重数学运算能力的培养,这就要求数学教师和学生要从点滴做起、从小处一点点的积累,达到运算更高层次的水平. 熟记书中的法则和公式,理解公式的内容,这对提高运算能力和应用题的解答有很大的帮助.

养成学生良好的书写习惯

在数学应用题作答的最后一步就是要进行卷面上的书写,就要求学生书写一定要规范,保持卷面的干净整洁,给老师留下良好的印象. 解、证明、文字叙述、列式、计算、单位、答等解题步骤都要按照正确的书写格式进行书写,做到有条有理、一目了然. 另外,在涉及数学符号的书写中,也要注意规范书写. 比如应用题作答中使用到的几何符号、代数符号、三角符号、关系符号和运算符号等符号的书写时一定要注意符号的准确、清晰. 文字方面,在解答应用题的过程中文字的书写一定要注意,不仅要做到内容工整没有错别字的出现,还要注意标点符号的正确使用.

此外,因为数学应用题有别于其他数学问题,其设置的主要目的在于解决日常的实际问题,所以,在计算出答案的时候并没有完整的解答出此题,此时必须要使用数学的语言将问题的答案进行表述,很多初中生往往都忽视了此步骤,以为作出结果就是完成了题目的要求,导致在这最后的步骤失分. 在这里,要利用数学语言作出最后的解答. 再次,在应用题的解答过程中还要注意单位的统一,计算结果后的单位不要漏写,需要进行检验的时候要记得检验,不要忘记最后的答. 数学教师在平时的联系中也要注意此类的问题.


数学题的技巧 第7篇

认真分析问题,找解题准切入点

由于数学问题纷繁复杂,学生容易受定势思维的影响,这样就会响解题思路造成很大的影响。为此,这时教师要给予学生正确指导,帮助学生进行思路的调整,对题目进行重新认真的分析,将切入点找准后,问题就能游刃而解了。例如:如AB=DC,AC=DB。求证:∠A=∠D。

此题是一道比较经典的证明全等的题型,主要是对学生对已知条件整合能力和观察识图能力的锻炼。然而,从图形的直观角度来证明∠AOC=∠DOB,这样的思路只会落入题目所设下的陷阱。为此,在对此题的审题时,教师要引导学生注意将题目已知的两个条件充分结合起来考虑,提醒学生可以适当添加一定的辅助线。

发挥想象力,借助面积出奇制胜

面积问题是数学中常出现的问题,在面积定义及相关规律中,蕴含着深刻的数学思想,如果学生能充分了解其中的韵味,能够熟练的掌握其中的数学论证思维,就有可能在其他数学问题中借助面积,出奇制胜顺利实现解题。由于几何图形的面积与线段、角、弧等有密切的联系,所以用面积法不但可证各种几何图形面积的等量关系,还可证某些线段相等、线段不等、角的相等以及比例式等多种类型的几何题。

例1 若E、F分别是矩形ABCD边AB、CD的中点,且矩形EFDA与矩形ABCD相似,则矩形ABCD的宽与长之比为() (A) 1∶2(B) 2∶1(C) 1∶2(D) 2∶1由上题已知信息可知,矩形ABCD的宽AD与AB的比,就是矩形EFDA与矩形ABCD的相似比。解:设矩形EFDA与矩形ABCD的相似比为k。因为E、F分别是矩形ABCD的中点所以S矩形ABCD=2S矩形EFDA所以S矩形EFDAS矩形ABCD=k2=12。所以k=1∶2。即矩形ABCD的宽与长之比为1∶2;故选(C)。此题我们利用了相似多边形面积的比等于相似比平方,这一性质,巧妙解决相似矩形中的长与宽比的问题。事实上,借助面积,形成解题思路的过程,就是学生思维转换的过程。

数学题的技巧 第8篇

培养和锻炼数学的解题方法和技巧

多做有针对性同时难度适当的同步练习,循序渐进,周而复始。很多同学在学习数学的过程中非常地努力,也知道要做大量的习题,有的甚至还自觉规定每天的做题数量,但是最后数学成绩提高也不是很明显。这是为什么呢?我想很大程度上是由于这些同学所做的习题没有针对性。对于做题,我的观点是不仅要做题,还要做好题

在这里我想说的是我们学而思的练习都是经过各个老师精挑细选的习题,又经过无数学员的检验,可以说是非常有针对性,当然啦现在书店中很多习题资料也很不错,希望大家能仔细挑选。同时,不仅要针对性练习,更重要的是要对做过的习题不断地总结和反思,总结自己为什么做错了,错在哪里了,那么正确的思路又是什么,等等,只要经过这样的反复思考,我相信咱们学员的学习成绩一定会有一个很大的提高。

注重数学基础知识的学习和积累

努力做到课前仔细预习,课上认真听讲,课后及时复习。一直以来,很多同学很不在乎学习数学的基础知识,认为基础知识在解题时用不上,尤其是数学的概念,定义和定理在考试时候也不会直接考到,学了也不会有用。其实这种想法是一个非常致命的错误,现在有很多学生,学习能力很强,也很有聪明,但在学习中忽视了基础知识的学习,没有抓住学习的重点,最后非常遗憾的没有学好数学。

其实,在中考中,大概有80%的题目都直接或者间接和基础知识有关系,而只有20%的题目才是我们所谓的难题,但是这些难题也都是由很多基础的题目综合而来的。所以要想学数学,首先应该也是必须要学好数学的基础知识。那么怎样学习基础知识呢?我的方法是课前预习,课中听讲,课后复习。只要这三个方面坚持不懈的结合起来,我相信最后一定能提高学生的数学成绩。

数学题的技巧 第9篇

构造方程以及方程组

在中学数学题目中有时会碰上这样的题目,题目中已经出现了一定的数量关系以及和结论有关的一些特征,而我们就可以根据这些条件构造出一个新的方程或者是方程组,并且通过这个方程来帮助我们将原本的问题转换从而解决这个问题,帮助我们完成题目要求。例如在题目中有实数X、Y、Z满足两个方程X=4-Y,Z2=XY-4,求证X=Y。在这个题目中我们可以将原本的方程进行转化,将等式右边的已知量移到等式的左边,这样的话就构成了两个新的方程但是又没有破坏题目原本给我们的条件,得出来的两个方程分别是X+Y=4,XY=Z2+4,明显可以看出这两个方程是一元二次方程的两根之和及两根之积,从而可以利用这个条件构造一个一元二次方程,通过解一元二次方程就可以知道X=Y是否成立了。

构造图形

除了可以构造方程以外,我们还可以构造图形,而构造图形一般是在代数问题中使用,因为有的代数问题求解十分麻烦,但是若是这些问题条件中有较明显的几何规律的话就有很大的机率可以将它转换成图形来帮助我们解题,当然这个时候也需要我们对于几何图形的知识像是性质以及意义有一定的了解。同样的我们在这里简单的举一个例子来看,已知范围在0~之间的三个角度θ1、θ2、θ3满足条件cos2θ1+cos2θ2+cos2θ3=2,要求我们证明cosθ1+cosθ2+cosθ3≥3。这道题目有一个非常明显的几何规律,那就是从条件cos2θ1+cos2θ2+cos2θ3=2可以联想到过长方体一顶点的一条体对角线与过该点的三个面所成的角度的余弦值的平方和等于2,由此我们可以将这道题目转化为与几何模型长方体有关的一道题目,从而方便我们解答。

构造实际模型

有时候也会有些题目让人摸不着头脑,觉得非常抽象而不知道怎么去解答,这个时候就可以反其道而行,在生活中找到原型,将抽象的问题具体化、简单化,这样就可以帮助我们更好的理解题目的意思,也能更简便快速的解题。像是求组数的问题,给了一个方程是x1+x2+x3=10,要求它的非负整数解的组数。乍看一下令人对题目的要求模糊不清,所以会无从下手,但是经过我们的构造可以将它构造成实际生活中的模型来看待,像是这道题目,可以看成是有10颗小球需要分给3个人,问我们有几种不同的分法。显然经过我们的构造题目以及变得非常的简单明了了,这个就是我们使用构造法的目的,也是构造法在中学数学解题中被频繁使用的原因了。当然中学数学解题中运用构造法的例子不仅仅只有这些,像是通过构造函数,构造向量,构造公式等等方法,它具有很大的灵活性和技巧性,有时候同一道题目也可以用不同的构造法来解题,而且对于学生来讲它打破了解题的固定思维,帮助学生培养观察力和解决问题的能力。

数学题的技巧 第10篇

培养初中生的运算能力

确定了应用题的类型,读懂了题意,找到了解答方法,之后就要进行解题了,可是这个时候也是学生容易出错的时候. 由于自身运算能力的差距,使得很多学生读懂了题意后,也同样得不到分. 这就要求学生要善于培养数学的运算能力,正确的理解并掌握数学运算法则和公式,这也是数学运算的基础所在.

然而,在大部分的初中生中对于数学运算的法则和公式掌握情况都不过关,存在记不准、混淆法则和公式、对运算公式的变形没有掌握等等情况,这都影响了学生数学运算能力的形成,进而阻碍了学生作答应用题的速度和能力的形成. 所以,要想准确的完成应用题的解答,就必须注重数学运算能力的培养,这就要求数学教师和学生要从点滴做起、从小处一点点的积累,达到运算更高层次的水平. 熟记书中的法则和公式,理解公式的内容,这对提高运算能力和应用题的解答有很大的帮助.

养成学生良好的书写习惯

在数学应用题作答的最后一步就是要进行卷面上的书写,就要求学生书写一定要规范,保持卷面的干净整洁,给老师留下良好的印象. 解、证明、文字叙述、列式、计算、单位、答等解题步骤都要按照正确的书写格式进行书写,做到有条有理、一目了然. 另外,在涉及数学符号的书写中,也要注意规范书写. 比如应用题作答中使用到的几何符号、代数符号、三角符号、关系符号和运算符号等符号的书写时一定要注意符号的准确、清晰. 文字方面,在解答应用题的过程中文字的书写一定要注意,不仅要做到内容工整没有错别字的出现,还要注意标点符号的正确使用.

此外,因为数学应用题有别于其他数学问题,其设置的主要目的在于解决日常的实际问题,所以,在计算出答案的时候并没有完整的解答出此题,此时必须要使用数学的语言将问题的答案进行表述,很多初中生往往都忽视了此步骤,以为作出结果就是完成了题目的要求,导致在这最后的步骤失分. 在这里,要利用数学语言作出最后的解答. 再次,在应用题的解答过程中还要注意单位的统一,计算结果后的单位不要漏写,需要进行检验的时候要记得检验,不要忘记最后的答. 数学教师在平时的联系中也要注意此类的问题.

初中数学题中的小技巧相关

数学题的技巧 第11篇

善于寻找突破口

解题时会有束手无策的时候,因为你面临的是一道看起来似乎很难地题目。但是,任何难题都不是“铁板一块”,都会有解题的突破口,只要找准了这个突破口,问题就会迎刃而解。

例如:任意调换五位数12345的各数位上的数字位置,所得的五位数中,质数的个数是( )。这个题初看起来如果考虑任意调换的情况,会有很多种可能性,经过观察发现1+2+3+4+5=15是3的倍数,不管如何调整,这个数都能被3整除,因此质数的个数为0。

恰当地选择解题方法

解题时,解题方法的选择很重要。如果解题方法得当,不仅成功率高,而且解题的速度也很快。反之,如果解题方法不当,不仅很费时间,且成功率很低,有时甚至达不到目的。

如 解方程 x2-5x+6=0可以用求根公式解,可以用配方法解也可以用十字相乘法解。但是用十字相乘法最简单,计算最快而且出现错误的几率小,既节省时间又容易得分。

数学题的技巧 第12篇

分类讨论。在许多时候,一些题目并没有给出一个确切的答案,而是需要进行不同角度的思考。例如,在一个直角三角形中,已经两条边的长度分别是5和7,求第三条边的长度。在教学过程中,我发现,许多学生进行了分类讨论。他们将已经的两条边分成了都是直角边和一条是直角边而另一条是斜边的情况。经过分类讨论,学生对问题有了一个全面而准确的认识。为学生其他内容的学习也会产生非常大的影响,因为他们在以后的学习中会进行多角度的考虑问题,会对问题进行分类讨论。同时,学生培养了良好的逻辑思想,拓展了知识面。

数形结合思想的运用。在许多题目中,如果单独地运用代数方法或几何方法都不能够很好地发现事物之间的联系,或者对于表达方式的清晰都造成了阻碍。但学生们却能够运用数形结合的思想把这一个问题解决掉。例如,为了求一个圆中最大的正方形的边长,可以通过设未知数的方法来进行解题。为了求二次函数的问题,可以把二次函数画到平面直角坐标系中来解决,等等。通过数形结合的方法,一方面可以更清晰地呈现解题过程,另一方面也可以让学生认真到解决问题的方法是多种多样的。

转化思想的运用。在解题过程中,发现许多学生能够正确而熟练地运用转化思想。例如,为了求证不在同一条直线上的两个线段相等,常常考虑到可以运用三角形相等来进行解决。例如为了求不在同一直线上的两个线段的最小值,常常考虑到运用对称或代换的方法把他们联系在同一条直线上来解题问题。转化的原则就是将不熟悉的和难的问题转化为熟知的、易于解决的问题,将抽象的问题转化为具体和直观的问题,将复杂的转化为简单的问题,将一般的转化为特殊问题,将实际问题转化为数学问题等等。而我的学生在解决具体的问题时很好地运用了这种思想方法。


数学题的技巧 第13篇

善于寻找突破口

解题时会有束手无策的时候,因为你面临的是一道看起来似乎很难地题目。但是,任何难题都不是“铁板一块”,都会有解题的突破口,只要找准了这个突破口,问题就会迎刃而解。

例如:任意调换五位数12345的各数位上的数字位置,所得的五位数中,质数的个数是( )。这个题初看起来如果考虑任意调换的情况,会有很多种可能性,经过观察发现1+2+3+4+5=15是3的倍数,不管如何调整,这个数都能被3整除,因此质数的个数为0。

初中数学题中的小技巧

恰当地选择解题方法

解题时,解题方法的选择很重要。如果解题方法得当,不仅成功率高,而且解题的速度也很快。反之,如果解题方法不当,不仅很费时间,且成功率很低,有时甚至达不到目的。

如 解方程 x2-5x+6=0可以用求根公式解,可以用配方法解也可以用十字相乘法解。但是用十字相乘法最简单,计算最快而且出现错误的几率小,既节省时间又容易得分。

数学题的技巧 第14篇

建立数学模型

在解数学题目的时候将语言的文字描述,提炼出合理的数学模型,然后分析和解决数学问题的同时通过调查和研究,了解问题表达的信息,再进行抽象简化后用数学符号表达成数学式子,然后在通过计算得到模型的结果,用结果来解决实际的问题,最后再进行实际检验。

在建立数学模型解题时一般遵循以下几个步骤:对数学题目有全面的理解,围绕题目的问题选择适当的方法。结合题目的问题作为建模的目的,对建模的对象进行简化抽象。在对模型假设的基础上,要有充分的依据和尽量简单化,便于问题的处理。利用所学的数学知识对模型进行解答。对解答后的数学模型进行确认和检验,然后对模型进行运用。

系心基础、拓宽视野

数学的理论知识就是数学的基础知识,是解决数学实际问题的关键。只有准确掌握数学理论知识,才能正确地对实际问题进行探析与解法探究,从而解决“实际问题”。让学生对数学课本学到的知识点进行综合运用,并对数学问题进行转化。所有这些都跟数学的基础知识有关,因此教师首先要让学生学好课本的基础知识,然后阅读课外大量的其他知识点,增加自己阅读面与理解能力,从而达到对数学全面认识与正确运用数学知识的解题能力,提高自己的分析能力,多途径掌握实际问题的解题方法。

数学的基础知识来源于课本,运用来源实践,喜悦来源于成功。学生对于课本知识掌握不够全面,理解不够透彻,没有准确掌握知识点,就给学生带来局限性的理解,甚至对实际问题的阅读都比较含糊,导致解题方法的迷茫,从而学生对解决实际问题的掌握就不感兴趣,很难尝到成功的喜悦。因此掌握数学实际问题的基础知识是非常重要,新教材中提供了丰富的实际问题。如体积问题、行程问题、销售问题、分配问题、利率问题、规划问题等等这些都是数学建模的最基本的实例,教学中要给学生认真讲解、合理归类、准确建模。

数学题的技巧 第15篇

调整大脑思绪

我们在考试前要排除杂念,使自己尽快的进入考试的状态,在脑中回忆数学知识点,进行针对性的自我暗示,减轻压力,稳定情绪,以平和的心态应对考试。

确保运算准确

高考的数学题题量比较大,所以时间比较紧张,基本不会给我们逐题检查的时间。所以运算准确十分重要,最好是一次成功。我们要知道,解题的速度是建立在准确度上的,而且解题的质量也影响着我们接下来的解答。最好是在快的基础上稳扎稳打。不要盲目的追求速度而忽略了准确度。

面对难题,讲究方法

在面对一道我们不会的题的时候,我们可以试着将这道题划分成一个个的子问题,先解决其中的一部分,说不准在做到哪个步骤的时候就会激发你的灵感,如果在某一道题的环节上耽误的时间过多,我们可以换一个途径,跳过这个步骤,从其他步骤开始做起。

数学题的技巧 第16篇

1、熟悉试卷大致题型,合理安排答题时间

其实不仅是数学考试需要学生熟悉题型、合理安排考试时间,其他科目也需要。每次考试之前,学生都应该明确几个问题:考试时间是多久、大致有哪些题型,考试卷子发下来以后,学生得根据自己平时学习情况大致规划一下考试时间,简单的题尽量节省时间,难的题在一定时间内如果没有头绪的话就先跳过,等把其他题目做完以后再回过头来做。

2、提高做题效率、学会舍弃

数学考试的时候,有的题可能综合性很强,难度很大,做这种题需要花费大量的时间,还有可能考虑不周到得不到分,对于这种题,学生最好是放弃,把时间节省下来,用来做那些自己能得到分的题目。

一般学习成绩不好太好的话,最好把时间和精力放在有把握的题上,保证正确率,对于后面难度比较大的题,看一眼如果很难的话,最好是直接放弃。

3、快速准确,巧用答题技巧

数学考试中,有些试题可以借助“外力”得到答案,比如几何图形题,大家可以可以用尺子量,选择题中答案是1、0这种的,可以直接带入试一下。

还有就是选择题可以用排除法、画图观察法等,节省时间时间的同时还能提高正确率。

不过提高数学成绩还得从实际出发,认真听课、努力学习才是最正确的方法。


数学题的技巧 第17篇

审题技巧

审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;

把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。

会做的题保证做对

这一点很重要,实践中发现,考试我们会做的题丢分率是百分之十,也就是说由于大意每次考试大家都要丢掉这么多的分,怎么将你的解题策略转化为得分点,虽然解题思路正确甚至很巧妙,但是最后可能做不对,这一点往往被一些考生所忽视,但是由于不善于把图形语言变成自己理解的语言,因此卷面上出现大量会又做不对的情况,我们自己的估分和得分相差甚远。如立体几何论证中的跳步,大总分人会丢掉三分之一以上的分数,代数论证中,得分更是少 的可怜。所心我们要边做边检查解题思路正确与否,做完后认真核对。不仅把题目做完,更要保证准确率,会做的一定要保证做对,要能得到分。

还有好多同学把本来做对的题改错了,这就得不偿失了。虽然这种情况是偶然的,但肯定是你在做的过程当中对某一个题目产生怀疑,又没太大的把握。遇到有疑问的题,我建议不要着急,我们做题的第一感觉是非常重要的,如果基本思路上没有大的错误,那么你凭着这个思路题做下去,仔细回忆有关的知识点。有时还会出现运算的错误,可能是由于紧张或粗心,平时要更加重视此类问题,又要养成良好的习惯,比如做一步回头看看,或者做两步回头看看,边解题边检查。不要总是犹豫不觉,做完了就要坚定信心。不要变成精神负担。

推荐访问:数学题 技巧 数学题技巧17篇 数学题的技巧(通用17篇) 数学题的方法和技巧