下面是小编为大家整理的五年级兴趣数学校本课程教案4篇【优秀范文】,供大家参考。
五年级兴趣数学校本课程教案4篇
五年级数学老师应该提高数学教学的有效性,需要在教学方式、方法上进行不断的创新与改善。在数学教学之前,你有准备一份五年级数学教案?它对你的教学工作有着重要的作用。你是否在找正准备撰写“五年级兴趣数学校本课程教案”,下面小编收集了相关的素材,供大家写文参考!
教学分析:
在生活中,有各种美丽的图案,其中有很多图案是由简单的图形经过平移或旋转得到的。本活动所展示的正是简单图形经过旋转形成复杂图案的过程。
教学目标:
1、通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象 。
2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向.竖直方向平移后的图形。
3、初步渗透变换的数学思想方法。
重点难点:
能正确区别平移和旋转的现象,并能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。
教学方法:
1、创设情景,引发思维。
2、组织讨论,深化思维。
3、加强练习,发展思维。
预习作业:
1、概念
(1)钟表的指针在不停的转动,从3时到5时指针转动了多少度?请画图表示
(2)像这样,在平面内,将一个图形绕 旋转 ,这样的图形运动称为图形的旋转;称为旋转中心; 称为旋转角
(3)如何找到旋转角?
2、性质
你能根据图形总结出旋转的性质吗?
3、画图研究
将三角形ABC完成以下旋转画图
1、以B为中心,把这个三角形顺时针旋转60°
2、以AC中点为中心,把这个三角形旋转180°
教学过程:
一、 导入
课件出现游乐场情景:摩天轮、穿梭机、旋转木马;滑滑梯、推车、小火车、速滑。
游乐园里各种游乐项目的运动变化相同吗?
在游乐园里,像滑滑梯、小朋友推车、小火车的直行、速滑这些物体都是沿着直线移动这样的现象叫做平移(板书:平移)。
而摩天轮、穿梭机、旋转木马,这些物体都绕着一个点或一个轴移动这样的现象,我们把他叫做旋转(板书:旋转)。
今天我们就一起来学习“旋转”。
板书课题。
二、学习新课
1、生活中的平移。
平移和旋转都是物体或图形的位置变化。平移就是物体沿着直线移动。
说得真棒,瞧,我们见过的电梯,它的上升、下降,都是沿着一条直线移动就是平移。
你们想亲身体验一下平移吗?
2、生活中的旋转
你们真是聪明的孩子,不仅认识了平移的现象还学会了平移的方法。刚才我们还见到了另一种现象,是什么呀?(旋转)
旋转就是物体绕着某一个点或轴运动。
像钟面的指针,指南针它们都绕着一个点移动,这些都是旋转现象。
同学们的思维真开阔,下面我们一起来体验一下旋转的现象吧!
现在就让我们一起来轻松轻松,去看看生活中的平移和旋转吧!
3、学习例题3
(1)与学生共同完成其中的一道题,余下的由学生独立完成。
(2)对于有错误的学生,在全班进行讲评。
4、学习例题4
(1) 引导学生数时要找准物体的一个点,再看这个点通过旋转后到什么位置,再来数一数经过多少格。
(4)课件演示画图过程,并帮助学生订正。
三、课内练习
四、课后作业
你能根据他们不同的运动变化分分类吗?
在生活中你见过哪些平移现象?先说给你同组的小朋友听听!再请学生回答。
全体起立,我们一起来,向左平移2步,向右平移2步。我们生活中的平移现象可多了,能用你桌上的物体做平移运动吗?
“你见过哪些旋转现象?”先说给同桌听听,然后汇报。
起立,一起来左转2圈,右转2圈。旋转可真有意思,你能用你周围的物体体验一下旋转吗?
(2)先说一说画图的步骤,再来画图。
(3)让学会先选择几个点,把位置定下来,再来画图。
1、第6页2题。
2、第9页4题、
通过生活事例,使学生初步了解图形的平移变换和旋转变换。并能正确判断图形的这两种变换。结合学生的生活实际, 初步感知平移和旋转现象。
通过动手操作,使学生会在方格纸上画出一个简单图形旋转90°后的图形。
板书设计:
旋 转
平移和旋转都是物体或图形的位置变化。
平移就是物体沿直线移动。
旋转就是物体绕着某一个点或轴运动
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
教学内容:
人教版义务教育课程标准教科书五年级下册第84-85页例3、例4及相关练习
学情分析:
《约分》是在学生已经掌握了分数的基本性质和公因数的基础上进行教学的,约分作为分数基本性质的直接应用,它是化简分数的常用方法。学习约分,不但可以提高对分数基本性质的的认识,还为分数的四则运算打下基础。
教学目标:
1、知识和技能目标:理解最简分数和约分的意义,掌握约分的方法,能够正确地进行约分,培养学生观察、比较和概括能力。
2、过程与方法目标:通过学生自主探索理解最简分数和约分的意义,经历探究约分方法的过程,渗透恒等变换思想。
3、情感态度和价值观目标:培养学生运用所学知识解决问题的能力,感受数学与生活的紧密联系。
教学重难点:
重点:最简分数的意义和约分的方法;掌握约分的方法。
难点:能准确的判断约分的结果是不是最简分数。
教具、学具准备:
课件
教学过程
复习铺垫。
课件出示一起回答 用列举法找出24和30的公因数和公因数 (为24
/
30约分做准备)
1、24的因数有( ),30 的因数有( ),24和30的公因数有( ),它们的公因数是( )。
2、填空(说说为什么,什么是分数的基本性质)
(教学方法:课件出示复习题,第1题学生在练习本上完成,第2题先默背,然后指名回答,集体订正。)
过渡:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕。
二、探究新知。
(一)、猜测、验证和比较,理解最简分数的意义
1、出示例3的教学情境图,让学生观察。
2、师:从情境图中,你得到了什么信息?(这是某所学校100米游泳比赛中,三个学生的对话,生1:一共要游100米,小明已经游了75米,生2:他已经游了全程的3
/
4,生3:75
/
100和3
/
4是一回事吗?)
3 、猜一猜:75
/
100和3
/
4
/
是一回事吗?
4、验证:让学生同桌讨论,把验证过程写在练习本上。
5、学生汇报结果,教师课件演示。
6、引导学生比较75
/
100和3
/
4两个分数的异同,得出最简分数的概念。
相同点:分数的大小相等
不同点:75
/
100分子和分母较大,含有公因数1、5、25;3
/
4分子和分母较小,只含有公因数1。分数的意义,分数单位都不同
总结概念:分子和分母只含有公因数1,像这样的分数叫做最简分数。
活动:请学生例举最简分数的例子。
教师说学生判断,
学生说大家判断
学生说同桌判断
抓住关键:分子和分母只含有公因数1,看是否有公因数2、3、5
8、课件出示练习:指出下面哪些分数是最简分数?为什么?
5
/
7 6
/
9 10
/
12 11
/
12 8
/
10 14
/
169
/
1624
/
25 21
/
24 13
/
17
名回答,说明为什么。
还是抓住关键:分子和分母只含有公因数1
假如都是2或3或5等的倍数,就不只有公因数1。
(二)、探究约分的意义和方法
过渡:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢?
课件出示例4. 判断24
/
30是不是最简分数(不是,除了1外,还有公因数2、3、6)
把24/30化简成最简分数
师提出思考问题:
(1)、化简指什么? 使分子分母的数字变小
(2)、化简后大小不能变,要运用什么性质? 等式的基本性质
(3)、 等式的基本性质中同时乘或除以相同的数(0除外),化简时,是乘,还是除,用什么来除。
除,用公因数来除
(4)、化简到什么时候为止? 最简分数,分子分母只有公因数1
学生小组内讨论交流,明确题目要求,为探究约分方法做准备。
2、师:请同学们试着做一做,把24/30化简成最简分数。大小不能变。
完成后小组内交流。
巡视,指导。
交流探究结果。
小组汇报结果。
(1)方法一:用分子和分母的公因数(1除外)依次去除。除到最简分数为止
24
/
30=24+30
/
30+2=12
/
152
/
15=12÷3
/
15÷3=4
/
5
(2)方法二:直接用分子和分母的公因数去除。直接得到最简分数。
24
/
30=24+6
/
30+6=4
/
5
/
小结:教师用课件演示比较两种约分方法,并总结约分的意义。
约分的概念:
师:约分还有一种书写方法,请同学们看第85页例4,
并在练习本上写一写约分的这种写法。
6、教师课件直观演示约分的另一种书写格式。
三、巩固练习(课件演示)
过渡:刚才我们一起学习到了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗?
1、判断下面各等式,哪些是约分?为什么?
2、错题改正。
3、指出下列分数分子和分母的公因数。
4、分苹果。
四、课堂小结
这节课我们学习了什么内容?(板书课题:约分)
五、板书设计
约 分
方法一:
24
/
30=24÷2
/
30÷2=12
/
15
12
/
15=12÷3
/
15÷3=4
/
5
方法二:
24
/
30=24÷6
/
30÷6=4
/
5
75
/
100= 3
/
4
不同点 : 分子和分母较大 分子和分母较小,
含有公因数1、5、25 只含有公因数1
最简分数
教学反思
1、为学生的数学思考搭梯子。
课堂提问是学生进行数学思考的前提,问题过易就没有思考探究的价值,但问题过难,学生又研讨不出来也没有实际意义。本节课的教学,我根据问题的难易和学生的实际情况给学生学习搭梯子。
如:在探究理解最简分数意义这一环节的教学中,学生验证出75
/
100和3
/
4相等以后,我提出了一个问题:75
/
100和3
/
4有什么区别?很多学生都能看出75
/
100分子分母较大,3
/
4分子分母较小,但没有学生从分子和分母的公因数上去比较。接着我给学生搭了个梯子:请同学们从分子和分母的公因数上比较一下看它们有什么区别?很快学生就找出了75
/
100分子分母有公因数1、5、25,而3/4只有公因数1,然后我又在“只有”这个词上加以强调,使学生深刻的理解了最简分数的概念。
又如探究“约分的意义和方法”这个环节,如果直接出示例4:24
/
30,然后让学生自主探究约分的方法,相信很多学生会“丈二和尚摸不着头脑”,无从下手。在出示例4之后,我是这样给学生搭梯子的。我要求学生不动手,先思考三个问题(①、化简指什么?②、化简要运用什么性质?③化简到什么时候为止?),接着让学生交流,明确题目要求,为探究约分方法做准备。通过这两步搭梯子之后,学生也就知道了化简就是把分子分母较大的分数化成分子分母较小的分数,化简要运用分数的基本性质,化简要化到最简分数为止。第三步再让学生自己去探究约分的方法。此时学生已胸中成竹,很自然的探究出了约分的方法,体验了成功的喜悦,突破了本课的教学重点。
2、为学生交流搭台子。
课堂是学生的舞台,需要教师给学生搭台子。只要有探究的地方,就需要交流,学生交流的过程就是在建构知识的过程。因此在理解最简分数和探究约分方法的教学中,我都充分让学生先同桌讨论再全班交流,最后归纳总结形成知识点。我认为教师在教学时,应时刻记住把课堂还给学生,为学生的精彩交流喝彩。只有这样,你的课堂才会因为学生的精彩交流而精彩。
3、不动笔墨不读书。
数学学习是学生动脑、动口、动手的过程。学生在思考交流之后更应让学生动手来写,熟话说“读十遍不如写一遍”。我特别注重学生动手能力的培养,要求学生 “不动笔墨不读书”。在复习铺垫中让学生把练习题先写在练习本上,再集体订正;在验证75/100和3/4是否相等的教学时,要求学生把验证过程写在练习本上;在探究约分的方法时,让学生把化简的过程写在练习本上,再交流;在学生看书找约分的另一种书写格式时,我始终要求学生练习写一写。
4、教学环节过渡亦无痕。
好的书法给人感觉“行云流水一气呵成”,好的课堂也应是环环相扣,衔接自然的。本节课我注重教学各个环节的过渡,如:复习铺垫后说:这是我们前面所学习的内容,这节课我们接着学习新内容,请看大屏幕(过渡到最简分数的教学);在学习了最简分数后说:刚才,我们一起学习了最简分数,在我们学过的分数中有很多都不是最简分数,我们能不能把它化成最简分数呢(过渡到约分的教学)?在学习了约分后说:我们一起学习了最简分数和约分的知识,老师发现大家学得很认真,但不知掌握的怎么样?大家愿意接受挑战吗(过渡到巩固练习的教学)?
5、思想方法渗透亦无形。
数学知识和技能的教学是一条明线,数学思想的渗透是教学的一条暗线。数学的每一个知识点都会渗透着一种数学思想,《约分》这一知识点就渗透着恒等变换的数学思想。本课的教学中,恒等变换的数学思想在验证75/100和3/4是否相等和化简分数的教学时得到渗透,在巩固练习中得到不断的内化和深化。
欠缺火候的地方:
有智慧的教师往往能利用课堂即生资源进行教学,使课堂教学更具魅力。整观这节课,本人扑捉学生课堂发言及练习中有用教育资源的能力不够,课堂教学亮点不够亮;其次本人对学生评价的语言还不能较大程度的激发学生的学习兴趣;第三,学生倾听和动笔的习惯还有待进一步提高。
名师张齐华说:好课是从心灵深处流淌出来的。一堂成功的课往往不是教师教学技艺和技巧的简单叠加与拼凑,而是其多年来学识、功底、经验、技巧、智慧、个性乃至人生阅历等在特定教育情境下的一种自然勃发与流淌。如练武之人,境界不是十八般武艺样样精通,而是有深厚内力和“手中无剑,心中有剑”的气魄。自知自己还有很多东西需要不断学习,路漫漫其修远兮,吾将上下而求索。
教学内容 P19例1、做一做、练习五第1—2题
教学
目标
知识与技能:让学生结合具体情境认识行与列,初步理解数对的含义;能在具体情境中用数对表示物体的。
过程与方法:使学生经历从已有经验到用数对确定物体位置的探索过程,体验用数对确定位置的必要性和简洁性。
情感、态度与价值观:渗透“数形结合”的思想,发展学生的空间观念。体会生活中处处有数学,产生对数学的亲切感。
教学重点 经历用数对确定物体位置的探索过程,知道用数对表示位置的方法。
教学难点 灵活运用数对知识解决实际问题。
教学方法 直观演示法与自主探索、小组合作的方法。
教学准备 多媒体课件
教学过程设计(含各环节中的教师活动和学生活动以及设计意图)
教学过程 一、创设情境,激趣导入
课件出示主题图,播放动画。
怎样才能既准确又简明地表示张亮同学的位置呢?这节课我们就一起来进一步学习 “确定位置”。(板书:确定位置)
二、探索新知
1、课件出示例1的内容。
(1)学生读题,了解已知信息。
教师引导学生可以根据自己在教室里的位置来思考这个问题。
(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?
学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。
2、认识数对,学会用数对确定具体情境中的位置。
(1)提出问题(看来用第几列、第几行描述一个人的位置真好,让我们有了一个统一的说法。)
大家觉得用这种方法表示一个人的位置,简炼吗?
师:能不能把这种方法再简化一下?
(2)创造、交流
同学们可了不起,在这么短的时间内,创造出了这么多种不同的表示方法。
这一种是哪个小组创造的?说说你们是怎么想的?
师;不错,既然每个小组都不约而同地保留下了这两个数,说明——?这两个数很重要!
真好!那这里的2和3各表示什么意思呢?
生:……
说得太棒了,数学规则需要统一,想不想知道数学上统一使用的方法,请看先写4,接着打上逗号,然后写3,最后打上括号,因为它们是一个整体。大家知道吗?像这样,用列数和行数组成的一对数,叫做——数对。
书:(2,3)
(4)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?
启发学生思考,引导学生用数对表示位置。
3、游戏中概括提升
我发现咱们班同学学得特别快,下面咱们玩个游戏好吗?
(1)师出生对
我说数对,请符合要求的同学快速地站起来。看谁反应最快!
(3,1)(3,2)(3,3)(3,4)(3,5)
奇怪,怎么就正好站起来这么一排呢?
(2)生出生对
如果让你来出数对,你能让一排同学站起来吗?谁来试试?
生:……
师:也不错!有没有谁能说出点不一样的?
生:(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
师:发现什么了?能说说为什么吗?
生:……
师:也就是说,数对中的第二个数相同,他们就都在同一行。
(3)师再出
不过,老师还有个本领:只说一个数对,就可能让一排同学都站起来,你们信不信?要不咱试试?
示(4,_)可能是哪些同学?
师:你的数对是?奇怪,我上面写(4,1)了吗?那你为什么站起来?
生:(第一个数是4,表示第4列,第二个数是求知数,所以第4列的每一个同学都有可能)能不能确定,到底是谁?如果_等于3呢,表示的一定是谁?其他同学坐下去,看来,要想确定某一个人的位置,只知道列数行不行?还得知道?(用数对表示位置一定要用到两个数)
师:(__)又可能是哪些同学?(全班同学都站起来了)。
师:全班同学都有可能吗?_、_表示两个相同的数,你的数对是(?,?),符合吗?不符合的同学请坐下。当_=1、2、3、4、5时,看来(__)能不能表示全班同学?只能表示什么?只能表示列数、行数相同同学的位置。
三、做一做,巩固确定位置的方法。
1、出示情景。组织学生观察情景,思考教师的提问。
2、引导学生利用在例题中学到的确定位置的方法来回答问题。
3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。
四、反馈练习。
完成教材第19 页的做一做。
五、课堂小结。
通过今天的学习,你有哪些收获?
推荐访问: